Sono carburanti realizzati in laboratorio combinando carbonio e idrogeno, gli stessi componenti che troviamo in natura negli idrocarburi. Se per produrre questi carburanti sintetici il carbonio è preso dall’atmosfera e l’idrogeno è prodotto a partire dall’acqua usando energia verde allora gli e-fuel possono essere considerati neutri rispetto alle emissioni di CO2, cosa che darà ai motori che li utilizzano la possibilità di circolare anche dopo il 2035 nella UE (qui la notizia). È quindi utile conoscerli meglio, insieme ai loro pregi e difetti.
È spontaneo pensare ai combustibili sintetici in forma liquida come benzina, gasolio e kerosene ma in realtà anche il metano e il Gpl sono idrocarburi, con il Gpl che è una miscela fatta principalmente di propano e butano, e quindi è possibile la sintesi anche di carburanti gassosi. Dato che è questa sintesi è fatta con l’energia elettrica si parla di e(lectric)-Fuel o Power-to-Liquid (PtL); il gas sarà PtG, Power to Gas e collettivamente li si definisce con Power to X - PtX.
Si, questi carburanti hanno già dimostrato di poter essere usati nei motori a scoppio. Il gasolio e la benzina sintetici richiedono alcuni adattamenti, per esempio nei filtri carburante, ma non sono stravolgimenti. Miscelandoli con i tradizionali carburanti fossili le emissioni di CO₂ vengono comunque ridotte. Stesso discorso per il gas sintetico. La produzione di quest'ultimo è attualmente modesta e la sola Audi gestisce, insieme a partner industriali, uno stabilimento che produce gas sintetico a CO2 compensata a Werlte in Germania. Ad oggi gli e-fuel sono impiegati stabilmente solo in piccole flotte di prova.
Partiamo da una cosa che accomuna i carburanti sintetici e quelli di origine biologica: entrambi non portano in superficie idrocarburi dal sottosuolo ma li creano ‘riciclando’ carbonio già presente sopra alla crosta terrestre. I primi lo ricavano dall’anidride carbonica mentre i secondi riutilizzano quello presente nelle piante e nelle biomasse. I biocarburanti hanno una brutta nomea perché entrano in competizione con l’ambiente e le risorse alimentari: in Asia e Sud America, ad esempio, le foreste vengono disboscate per piantare palme il cui olio viene usato per cosmetici, alimenti e per biocarburanti e la stessa cosa si può dire per terreni sottratti alle coltivazioni alimentari. L'Italia ha ormai maturato una significativa esperienza nella produzione di biocarburanti da residui e scarti vegetali e quindi questi effetti negativi sono minimizzati ma queste specificità non sono bastate a convincere la UE che ha invece creduto negli e-fuel sponsorizzati dalla Germania, da cui l’astensione italiana nelle ultime votazioni (qui la notizia).
Si può affacciare a questo punto una domanda: perché non usare direttamente l’idrogeno ‘verde’ - quello prodotto dall’acqua con elettrolisi alimentata con energia rinnovabile - nei veicoli con celle a combustibile? Le emissioni sarebbero solamente di vapore acqueo e si risparmierebbero molti passaggi. La questione è che l'idrogeno è difficile da trasportare: occorre comprimerlo a 700 bar o trasportarlo liquido a temperature bassissime in costosi serbatoi. Anche gli eventuali gasdotti sono complicati perché devono essere sigillati in modo molto più accurato rispetto ai metanodotti: l’idrogeno è molto ‘sfuggente’. Gli e-fuel non solo possono utilizzare le infrastrutture di trasporto/distribuzione e le stazioni di rifornimento esistenti, ma sono molto compatibili con gli odierni motori a combustione interna, compresi quelli di camion, aeroplani e navi. Un altro fattore è la loro ‘concentrazione: quelli liquidi hanno una densità enormemente superiore all’idrogeno gassoso e sappiamo bene che un litro di gasolio - fossile o sintetico - ha circa 10 kWh di energia. Quindi una piccola tanica di e-fuel ha la stessa energia del pesantissimo battery pack di una Mercedes EQS o di una Tesla Model X.
Il principio è quello della neutralità: se sintetizzo e-fuel usando energie rinnovabili per catturare CO₂ dall'aria e usando idrogeno verde, posso dire che quando bruciano restituiscono la stessa CO₂ usata per produrli. È una partita di giro, che non varia la CO₂ già presente nell’atmosfera. Usando l'idrogeno verde direttamente in una fuel cell oppure nei motori a scoppio predisposti (in questo caso si avranno anche degli ossidi d’azoto) corrispondenti, le emissioni sarebbero invece di sola acqua.
Se processo di creazione dei carburanti sintetici appare lineare, la sua concretizzazione lo è molto meno. L'estrazione dall’atmosfera (Direct Air Capture, DAC) sarebbe climaticamente neutra se fatta con energie rinnovabili. Peccato che la DAC sia costosa e ad alta intensità energetica. Uno studio del 2018 parlava di circa 500 euro per tonnellata e di un possibile prezzo da 80 a 100 euro nel 2030. Lo spazio richiesto dagli impianti sarebbe poi immenso: usando gli impianti indicati in quello studio ne occorrerebbero 400.000 per trattare l'1 % delle emissioni globali di CO₂, che sono 350 Mt/anno. I sistemi DAC della svizzera Climeworks promettono di rimuovere 900 tonnellate di CO₂ dall'aria ogni anno: peccato che nel 2019 il traffico tedesco ne abbia emesso 14,7 milioni di tonnellate, il 72% delle quali derivano dalle automobili. Sono allo studio altri processi: un impianto cinese ha già trattato 150.000 tonnellate di CO₂ per produrre 110mila tonnellate di metanolo insieme a idrogeno verde. Il metanolo ha una densità energetica leggermente inferiore a quella della benzina e, rispetto alla sua controparte fossile, il risparmio di CO₂ dovrebbe essere del 90%: non è male ma la strada appare impervia.
Partiamo dal presupposto che, anche se le auto elettriche non hanno emissioni dirette durante il funzionamento, la generazione del loro ‘carburante’ emette comunque CO₂ anche se è fatta con fonti rinnovabili: occorre costruire per esempio celle solari o turbine eoliche e questo non è ‘gratis’ dal punto di vista dei gas serra. Ogni processo genera della CO2 equivalente derivante da un rendimento che non è mai del 100%. Il punto è che la creazione degli e-fuel impiega molta energia e il prodotto va ad alimentare un motore non molto efficiente, con T&E a ritenere che le emissioni siano solo di poco minori (qui per saperne di più). Quindi un’auto elettrica, che ha un rendimento molto superiore, genera una CO2 equivalente minore anche se l’elettricità che la alimenta non è al 100% rinnovabile. Questo è evidente già nel confronto (vedi figura) fra vetture Volkswgen elettriche, a gasolio e a benzina durante tutto il ciclo vita di 200.000 km e il divario potrebbe allargarsi con i molto energivori e-fuel. Le batterie si possono riciclare, utilizzano sempre meno cobalto e potrebbero addirittura virare verso il sodio (qui la notizia), eliminando virtualmente ogni preoccupazione riguardo le materie prime critiche richieste per le celle al litio.
Uno studio dell'Helmholtz Institute stima l'efficienza complessiva well-to-wheel dei veicoli a fuel cell intorno al 15-18%, valore che sale al 70% per i veicoli a batteria. In effetti la creazione dell’idrogeno ha un basso rendimento energetico e le fuel celle rendono meno della classica batteria. Il professor Martin Doppelbauer del Karlsruhe Institute of Technology pensa addirittura che che il bilancio energetico della produzione di idrogeno sia ancor meno favorevole di quanto si creda. Doppelbauer pensa infatti che sarà necessaria la liquefazione dell'idrogeno, che avviene a -253 gradi, per trasportarne facilmente grandi quantità. Anche per questo il ricercatore ritiene che solo il 15% dell'energia elettrica usata per creare l’idrogeno verrebbe convertita in energia meccanica. Il tema dell’idrogeno, ormai lo sappiamo, è legato agli e-fuel e quindi si stima che il rendimento dal pozzo alla ruota dei carburanti di sintesi possa essere solo del 10%. In effetti i passaggi sono molti e avidi di energia, cosa che porta a stimare un dispendio energetico di 27 kWh di elettricità per produrre un litro di e-diesel, che sappiamo avere un’energia di circa 10 kWh: un vero controsenso, quindi. Con 27 kWh anche una grande e pesante SUV elettrico percorre più di 100 chilometri, con un rendimento molto superiore a quello di una buona auto diesel.
Il basso rendimento della catena e-fuel + motore a scoppio porta a numeri molto svantaggiosi. Le stime parlano di 140 miliardi di kWh per far funzionare un circolante tedesco magicamente convertito in all-electric. Sembra un’enormità ma si tratta del 25% del consumo complessivo attuale. La conversione di tutto il parco con veicoli a e-fuel porterebbe a una stima di più di un trilione - 1000 miliardi - di kWh aggiuntivi, una quantità che è quasi il doppio dei consumi totali e che dovrebbero essere generati da fonti rinnovabili per conservare la neutralità alla CO2.
Non è difficile capire che il grande consumo energetico e la complicazione del processo produttivo non rendono economico il prezzo degli e-fuel. Le stime dell'ADAC (l’ACI tedesco) parlano di un costo di produzione di circa 4,50 euro/litro contro i 50 centesimi della sua controparte di origine fossile. Michael Steiner, responsabile dello sviluppo di Porsche, vede "la possibilità che i carburanti alla fine abbiano un prezzo competitivo" di circa 1,90 euro. Una stima del Bundestag (il parlamento tedesco) ipotizza un costo di produzione 1 euro/litro al 2050. Con queste ipotesi e agendo sulle tasse il prezzo di vendita degli e-fuel sarebbe quindi paragonabile.
Come detto più sopra, tutto il processo di produzione dei carburanti di sintesi dovrebbe avvenire, per avere la neutralità alla CO₂, con energia rinnovabile, cosa molto difficile da ottenere. La produzione del ‘carburante elettrico’ in Cile come previsto da Porsche, per esempio utilizza l’abbondante energia eolica generata nella ventosa Patagonia. L'idea di sintetizzare e-fuel oltreoceano per portarli in Europa, bruciandoli in motori a combustione con un'efficienza di circa il 25-30 % non sembra linearissima. È probabile che anche l'acqua diventerà sempre più scarsa in futuro e, dato che con i metodi attuali per ottenere 1 chilogrammo di idrogeno occorrono 9 litri di acqua molto pura, si profila un altro collo di bottiglia per gli e-fuel.
I vantaggi degli e-fuel ci sono e non sono trascurabili. L’ alta densità di energia è molto importante per gli aerei, l’uso nei veicoli attuali richiede pochi adattamenti così come quelli richiesti alle infrastrutture esistente. Il rifornimento è veloce come quello attuale e la combustione è comunque più pulita (per esempio per il particolato) rispetto ai combustibili fossili. La loro produzione può avvenire da elettricità 100% rinnovabile e, in qualche misura, li si può considerare con un mezzo per immagazzinare i picchi di produzione delle rinnovabili stesse. Gli svantaggi sono però pesanti: la richiesta di energia elettrica da fonti rinnovabili è enorme, gli investimenti sono elevati, così come la produzione di CO₂ per la realizzazione degli impianti. Il fabbisogno idrico è molto alto elevato e il processo di cattura della CO₂ dall'aria è difficile e poco efficace nel diminuire la i gas serra nell’atmosfera.
La grande promessa dell'e-fuel è l’usare benzina, gasolio e kerosene come al solito, ma a emissioni di CO2 compensate, una prospettiva allettante. Un esame più attento porta però a evidenziare almeno una criticità importante: il consumo di energia per produrre e-fuel è così elevato da sovrastare i punti di forza di questa soluzione. L’elettricità che teoricamente può essere generata in modo neutrale rispetto all’anidride carbonica non è illimitata, anzi, e questo mette in primo piano l'efficienza. Anche la tempistica è importante: Porsche prevede di produrre 550 milioni di litri in Cile nel 2026, un quantitativo che è solo l'1% del consumo di carburante in Germania e che sarà quindi ininfluente. Gli e-fuel, come l'idrogeno, potranno avere utilizzi specifici: il secondo al posto del metano per l’industria, i primi per il trasporto aereo grazie a una densità energetica che attualmente non sembra neanche avvicinabile dalle batterie. Nel caso dei veicoli leggeri: con il famoso 25% in più di elettricità, l'intera flotta tedesca di 47 milioni di veicoli potrebbe essere azionata elettricamente. Sembra esserne convinto anche Carlos Tavares: il CEO di Stellantis, per quanto poco tifoso delle auto elettriche, è convinto che gli e-fuel non ritarderanno il cammino delle auto elettriche (qui la notizia).